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LAWS OF THE KINETIC THEORY OF STRENGTH OF FROZEN SOILS 

A. A. Konovalov UDC 624.139 

The studies [i, 2], devoted to the rheology of frozen soils, demonstrated the kinetic 
nature of the strength of these soils and presented a physical interpretation of the param- 
eters of an equation describing their long-term strength from an atomic-kinetic viewpoint. 
However, these findings have not found expression in the mathematical theory of the rheology 
of frozen soils~ Nor has use been made of quantitative relations and parameters expressing 
the temperature-time dependence of strength. According to [3] such relations and parameters 
can be established for all solids. Standard interpolation formulas which include empirical 
coefficients serve as the basis of quantitative methods of determining the strength charac- 
teristics of frozen soil. In particular, use is made of the coefficient [I]: 

= (wI~)V r (i) 

Here, �9 is the time to failure (life); o is pressure; g and F are empirical coefficients 
dependent on temperature, soil composition, type of load, etc. 

We will attempt to find the temperature dependence of the strength of frozen soil in 
explicit form. Equation (i) is conveniently represented as 

T ---- T0(o,~/o)wr ~ (2) 

where o m is the instantaneous (maximum) strength corresponding to the minimum life ("momenf9 
T 0 . In accordance with the representations of atomic-kinetic theory, this physical "moment" 
is equal to the period of thermal vibration of the atoms T o ~ i0 -z3 sec. 
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The following was found from an analysis of actual data from tests of frozen soils in 
which the variables were soil composition, temperature, stress state, the material and form 
of the foundation, and other quantities [4]. 

First of all, the graphs of the dependence of log o on log T for frozen soils tested 
at one temperature while the other conditions were varied converged to a single point - a 
pole with the coordinates ~0 ~ 10-13 sec (i0 -14-s min) and o = o m. Secondly, the time de- 
pendences of the strength of frozen soils tested under the same conditions except for tem- 
perature do not converge to a single point but are instead parallel. This is apparent from 
Fig. i, which shows experimental data on the strength of frozen soil in compression (a) and 
frozen clay in adhesion tests (b) at different temperatures. This data, borrowed from [I], 
was analyzed using Eq. (2) (lines 1-3 are for t = -5, -i0, -20~ Similar results were 
obtained when we used Eq. (2) to analyze test data from [4]. This indicates that the slope 
is independent of temperature but is a function of all other conditions. Temperature 
affects the second parameter of the strength equation g and the second coordinate of the 
pole o m entering into the expression for this parameter. 

Thus, quantitative manifestations of the kinetic nature of the strength of frozen 
soils have certain specific features connected with the fact that frozen soil, rather than 
being a solid, is a complex system consisting of an organic-mineral skeleton, water in 
three phases, and aqueous solutions and gases. Also - and this is a key point - the tempera- 
ture of frozen soil is very close to the melting point. 

The main type of bond between particles in frozen soil is icy-cementationalo Thus, it 
can be assumed that an elementary volume of frozen soil, i.e., a volume whose dimensions can 
be ignored, instantaneously loses its strength at the melting point of ice. Here, instant- 
aneous strength is equal to the pressure at which the ice melts. The melting point of ice 
depends on external pressure in accordance with the Clapeyron-Clausius law. Then 

era = 0 , t  -~ t / K ~  t/K (3) 

(t is temperature, ~ K ~ 0.073~ 
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As is known, when soil freezes (or thaws) as moisture migrates in an open system, the 
relationship between external pressure and the temperature of the phase transitions which 
take place in the soil moisture is described by the so-called generalized Clapeyron-Clausius 
law. In the expression of this law, K is roughly ten times greater than in the above case. 

According to experimental data, the average value of K is about 0.079~ [4]. This 
is close to the value of the coefficient in the classical Clapeyron-Clausius equation. Thus, 
in the example cited (see Fig. i), K = t/o m fluctuates within the range 0.073-0.083~ 
for different conditions. Allowing for the migration of moisture in the determination of 
o m undoubtedly refines this value. However, this factor is not always manifest, given the 
logarithmic accuracy of Eq. (2). 

Of course, all of the above considerations are based on a very long-range time extra- 
polation of empirical data - although similar doubts attend the generally accepted extra- 
polation of (for example) the results of 8 h tests of frozen soil to a 50 yr period. It 
can also probably be argued that the results being discussed here are also insufficiently 
representative. Nevertheless, it is evident that, with a decrease in T, the function o(T) 
approaches a common pole with the coordinates T 0 = 10 -13 sec and o m = t/K (in the logarithmic 
scale). It is also necessary to take into account the strict physical meanings of T 0 and 
o m, the convenience for experimental work and calculations (experimentally, it is necessary 
to find only one parameter - F - which is independent of temperature) and the relatively 
small effect of T o on o (at F = 0.I, a decrease in T o by a factor of i000 results in only a 
doubling of maximum long-term strength). All this makes it possible to recommend Eqs. (2) 
and (3) for practical use. 

It should be noted that the above-described laws turn out to be valid in most cases 
where actual materials are concerned. In particular, in tests with a spherical die, the 
pole of the dependence of o on T often does not coincide with the coordinates T o = 10 -13 
sec and o m = t/K. In an analysis of the results of tests involving the driving of model 
piles into frozen soil with a temperature of -2.2~ in [5], it was established that the 
graphs of the dependence of log o on log �9 consist of two linear section intersecting at 
o = 0.I MPa. It is interesting that the dependence of o on �9 also satisfies (2)-(3) at 
o > 0.i. In fact, the parameters of interpolation formula (i) in [5] have the form g = 0.33, 
F = 0.145. Having inserted the experimental data into the formula for g = ToFt/K, we obtain 
g = i0-13"~ • 2.2/0.079 = 0.36. The values of g calculated from the formula which 
follows from (2) and the experimental values of g differ by only 9%. 

It was shown in [6] for frozen soils that if the load, instead of being applied to the 
entire specimen, is applied only to the part occupied by particles of soil and ice - as 
opposed to the part occupied by unfrozen water - (we will designate this load as o), then 
the pole of the curves of the dependence of log o on log % is independent of t. This is 
consistent with out finding on the dependence of o m on t. 

The fact is that o m = om/K n (K n is a coefficient which is less than i and is directly 
proportional to temperature [6]). At the same time, o m is also directly proportional to t. 
As a result, it turns out that o m is nearly independent of temperature, since it goes into 
the numerator and the denominator of the expression of this quantity. 

Determining the time dependence of strength for specific materials is not sufficient 
for systematically analyzing deviations of this dependence from Eq. (2). This problem 
requires further studies. 
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In accordance with the kinetic concept of the strength of solids, the limiting strain 
m u (at which the solid suffers a loss of integrity and fails) is equal to the product of 
creep rate & and lifetime and is a constant: 

~ ' u  = e T  = c o n s t .  (4) 

Since the fracture energy of a solid is approximately equal to the energy of sublimation 
(at which the body vaporizes and disappears) then Su = 1 [3]. It follows from (4) that the 
dependence of creep rate on the load is a "mirror" reflection of the dependence of lifetime 
on the load. 

It was established experimentally in [I] that Eq. (4) is also generally valid for frozen 
soils. The limiting strain of a frozen soil depends very slightly on temperature and load 
and somewhat more on the type of stress state and type of soil. Meanwhile, the mean value of 
this strain is close to the relative subsidence accompanying the transformation of ice into 
water (s u ~ 0.09). 

We find the expression for the relative creep rate from a combination of the solutions 
of (2) and (4): 

-' (olom) I/r (5) __  _ TO 
s T s 

(s and v are dimensional subsidence and creep rate). 

The validity of the solution [5] - being (as in the case of solids) a "mirror" reflec- 
tion of the dependence of lifetime on load - has been shown by experimental results. As an 
example, Fig. 2 shows graphs of the dependence of the logarithms of lifetime and creep rate 
on the logarithms of the load on frozen sandy loam with a moisture content of 26%. The 
values shown are the actual values from [i] and values calculated from Eqs. (2) and (5) with 
g = 0.16 and F = 0.i (lines 1-3 are for t = -5, -i0, -20~ respectively). The reciprocity 
of Eqs. (2) and (5) is also apparent from the graphs presented in [5]. We can use (5) to 
find an expression which connects strength with dimensionless and dimensional steady-state 
creep rate 

o = (T0~/~)r ~K, ~ = (~0u/s) r UK. (6) 

In complex cases in which there is some doubt as to the validity of using the kinetic 
concept of strength, it is best to express (6) in a general form analogous to (I): 
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�9 r our o - =  g e g  , o = g  (7) 

(ge, gv are parameters determined from testing). Equations (6) and (7) are convenient be- 
cause they make it possible to perform calculations based both on strength and on strain. 

The quantitative features observed in tests with a constant load are also seen in tests 
with a variable load - in particular, a load which changes with a constant rate 6. 

We find analytical equations for the rate dependence of strength and lifetime from the 
solution of a system comprised of the equation describing lifetime under a constant load 
(2), an equation expressing the well-known [I, 3] principle of the additivity of perturba- 
tions 

~o (8) 

and the equation for a load changing at a constant rate: 

O : f f T .  

After some simple transformations, we obtain 

(9) 

= (g/~)~=~; (1o) 
= ~/r o~-=, ( 11 ) 

where, as before, g = ~0FOm; ~ = F/(I + F). 

Equations (I0) and (ii) are valid for the case when the total load leading to fracture 
is greater than the limiting long-term load. The use of these formulas can save a significant 
amount of time during testing. 

In tests we conducted with S. M. Pakhomov, we subjected to groups of specimens of 
loamy clay to uniaxial compression. Moisture content and temperature were 20% and -3.3~ 
for the first group and 24% and -3.9~ for the second group. We also tested two groups of 
specimens of ice in the form of cubes 10 cm high. These cubes were reinforced with an 
interlayer of dornite to depths of 7 and 3 cm (groups 3 and 4). The temperature of these 
specimens was -3.4~ The test results were analyzed in the form of the dependence of in 

on in 6 (Fig. 3, where a-d correspond to groups i-4). We then used the above-described 
method to determine g and F: 

gl...g4 =4,2;  5.7; 2,8:2,7 MPa/min -r, 

FI...F 4 =0.07; 0.07: 0.074; 0.076. 

There are five quantities in the expression for g. All of them are known either as 
constants (T o and K) or empirical results. If any four of them are taken from experimental 
data and the fifth - temperature, for example - is calculated and compared with the test 
temperature, it becomes obvious that the test results are consistent with the kinetic concept 
of strength when the two indicated values of temperature are the same. 

We used Eqs. (7) and (ii) to find the temperature in four tests: tl...t 4 = -4.1; -4.6; 
-2.7; -2.8~ 

Considering that c 0 and K were evaluated on the basis of theoretical considerations, 
we can regard the resulting difference (18-25%) between the calculated and experimental 
values of temperature (-3.9 and -3.4~ as wholly satisfactory. 

Figure 4 (a-c: sand, sandy loam, and loamy clay, respectively) shows the results of 
tests [7] of different types of soils in uniaxial compression at different temperatures and 
loading rates. The results are depicted in the form of the rate dependence of strength. 
The lines in the graphs were constructed from results calculated on the basis of Eq. (ii). 
Here, we first used the method described above to find the values of g and F (points 1-4 
correspond to t = -15, -8, -4, -2~ respectively). The good agreement between the actual 
and calculated data is evident, which illustrates the agreement between the rate dependence 
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of strength and the kinetic concept of strength. As in the case of a constant load, it can 
be assumed that F is independent of t - regardless of temperature, each soil corresponds to 
a single value of F (except for sand with t = -15~ this result apparently being connected 
with a deviation from the pressure dependence of the freezing point of water described by 
Eq. (3)). 

Although the form of the temperature-time (or rate) dependence of strength will be re- 
fined later, it can be taken as an established fact that temperature is connected with only 
one of the two parameters of the rheological curve. This makes it possible to significantly 
shorten and simplify tests and calculations performed to determine the strength of frozen 
soil. 
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PROBLEM OF THE THEORY OF BEAMS WITH INITIAL STRESSES 

A. G. Kolpakov UDC 539.3 

Aysymptotic averaging methods - which have been widely used for monolithic composites 
(see [i-3] and the accompanying bibiliographies) - are now being used to study bodies with 
a periodic structure that occupy thin regions: plates and beams [4-6]. In the present 
study, we make a transition from a three-dimensional problem of the theory of elasticity 
with initial stresses in the region of the small diameter E (which is formalized in the 
form s + 0) to a problem of beam theory. In the general case, the new problem (which is 
asymptotically exact) differs from the classical problem. It coincides with the classical 
problem for uniform beams, however, i.e., the difference between the asymptotic and classical 
theories is seen for beams of complex structure. The use of such beams in modern structures 
makes the corrections introduced by asympototic theory practically important. The difference 
between the given problem and the problem examined in [6] is the asymmetry of the coeffi- 
cients. This leads to the appearance of new elements in the use of asymptotic methods, as 
well as to several new cellular problems. As will be seen from the below discussion ~, the 
order of the initial stresses o*ij relative to the diameter of the region ~ plays a signi- 
ficant role in the problem. To account for this, we take the initial stresses in the form 

= a-2o*ij(-2) + s-lo*ij(-l) + .... corresponding to bending of the beam or its axial o*ij 
tension with fixed forces. The axial tension of a beam with fixed strains, when o*ij is on 

the order of E -4, leads to results similar to [7-9] for monolithic bodies. This case is 
not examined here. 

Formulation of the Problem. We will examine a body of periodic construction obtained 
by repeating a certain unit cell (UC) PE (E is its characteristic dimension) along the Ox I 
axis (see Fig. i). As a result, we have a body of periodic structure with the character- 
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